Whether to print out response text.
Optional
callbacksOptional
criterionOptional
evaluationOptional
llmOptional
memoryOptional
metadataOptional
nameOptional
skipOptional
tagsOptional
config: (RunnableConfig | Callbacks)[]Use .batch() instead. Will be removed in 0.2.0.
This feature is deprecated and will be removed in the future.
It is not recommended for use.
Call the chain on all inputs in the list
Assigns new fields to the dict output of this runnable. Returns a new runnable.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Array of inputs to each batch call.
Optional
options: Partial<RunnableConfig> | Partial<RunnableConfig>[]Either a single call options object to apply to each batch call or an array for each call.
Optional
batchOptions: RunnableBatchOptions & { An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set
Optional
options: Partial<RunnableConfig> | Partial<RunnableConfig>[]Optional
batchOptions: RunnableBatchOptions & { Optional
options: Partial<RunnableConfig> | Partial<RunnableConfig>[]Optional
batchOptions: RunnableBatchOptionsBind arguments to a Runnable, returning a new Runnable.
A new RunnableBinding that, when invoked, will apply the bound args.
Run the core logic of this chain and add to output if desired.
Wraps _call and handles memory.
Optional
config: BaseCallbackConfig | CallbacksCheck if the evaluation arguments are valid.
Optional
reference: stringThe reference label.
Optional
input: stringThe input string.
If the evaluator requires an input string but none is provided, or if the evaluator requires a reference label but none is provided.
Evaluate Chain or LLM output, based on optional input and label.
Optional
callOptions: BaseLanguageModelCallOptionsOptional
config: BaseCallbackConfig | CallbacksThe evaluation results containing the score or value. It is recommended that the dictionary contain the following keys:
Invoke the chain with the provided input and returns the output.
Input values for the chain run.
Optional
config: RunnableConfigOptional configuration for the Runnable.
Promise that resolves with the output of the chain run.
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
Pick keys from the dict output of this runnable. Returns a new runnable.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
A runnable, function, or object whose values are functions or runnables.
A new runnable sequence.
Format prompt with values and pass to LLM
keys to pass to prompt template
Optional
callbackManager: CallbackManagerCallbackManager to use
Completion from LLM.
llm.predict({ adjective: "funny" })
Optional
config: RunnableConfig | CallbacksUse .invoke() instead. Will be removed in 0.2.0.
Stream output in chunks.
Optional
options: Partial<RunnableConfig>A readable stream that is also an iterable.
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Optional
options: Partial<RunnableConfig>Optional
streamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
New configuration parameters to attach to the new runnable.
A new RunnableBinding with a config matching what's passed.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
Other runnables to call if the runnable errors.
A new RunnableWithFallbacks.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
The object containing the callback functions.
Optional
onCalled after the runnable finishes running, with the Run object.
Optional
config: RunnableConfigOptional
onCalled if the runnable throws an error, with the Run object.
Optional
config: RunnableConfigOptional
onCalled before the runnable starts running, with the Run object.
Optional
config: RunnableConfigAdd retry logic to an existing runnable.
Optional
fields: { Optional
onOptional
stopA new RunnableRetry that, when invoked, will retry according to the parameters.
Static
deserializeStatic
fromLLMCreate a new instance of the CriteriaEvalChain.
Optional
criteria: CriteriaLikeOptional
chainOptions: Partial<Omit<LLMEvalChainInput<EvalOutputType, BaseLanguageModelInterface<any, BaseLanguageModelCallOptions>>, "llm">>Options to pass to the constructor of the LLMChain.
Static
isStatic
resolveResolve the criteria to evaluate.
Optional
criteria: CriteriaLikeThe criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single ConstitutionalPrinciple
instance
A dictionary mapping criterion names to descriptions.
Static
resolveResolve the prompt to use for the evaluation.
Optional
prompt: BasePromptTemplate<any, BasePromptValueInterface, any>Generated using TypeDoc
Criteria evaluation chain that requires references.